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Abstract
Numerous studies have demonstrated that natural antioxidants protect cells from contaminants’ toxic effects. This study 
aims to investigate the potential protective effects of melatonin (MLT) against linuron-induced testicular toxicity and sper-
matogenesis damage. Rats were divided into four groups: the control group (no treatment), the MLT group that received 
MLT (10 mg/kg b.w), the LIN group that received LIN (120 mg/kg b.w), and (LIN/MLT) group treated with LIN and MLT. 
The investigated substances MLT and linuron (LIN) were given orally to the animals for 30 days. The results showed that 
linuron treatment-induced testicular dysfunctions demonstrated significant inhibition of pituitary–testicular axis hormone 
synthesis (diminution serum levels of testosterone, FSH, and LH) associated with spermatogenesis injury improved by low 
Johnsen scores and increased in testis CD117 expression. Furthermore, superoxide dismutase (SOD) and catalase (CAT) 
activities, as well as reduced glutathione (GSH) content, were significantly decreased. In contrast, there was a considerable 
rise in the activity of glutathione S-transferase (GST), glutathione peroxidase (GPx), malondialdehyde (MDA), and protein 
carbonyl (PCO). Our results established that oral MLT supplementation in LIN-treated rats restored plasma hormone levels 
and alleviated the adverse cytotoxic effects of LIN. According to the findings, MLT demonstrated potential as an endogenous 
antioxidant, effectively alleviating linuron-induced testicular oxidative injury.
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Introduction

In the agricultural industry, hazardous chemicals and pesti-
cides are frequently employed. As a result of rising world-
wide demand, they are a practical and affordable solution 
to increase the quality and quantity of food items (Sharma 
et al. 2019). Due to their high consumption, these chemicals 

rank among the most pervasive environmental pollutants. 
The development of several diseases, such as metabolic dis-
orders, neurotoxic and carcinogenic conditions, issues with 
reproduction, and other long-term health impacts, has been 
related to persistent exposure to these compounds (Kim et al. 
2017; Bailey et al. 2018). Pesticides have negative impacts 
on target organisms in a variety of ways, and depending on 
a number of variables, including the amount, frequency of 
exposure, genetics, nutritional state, and the type of pesti-
cide, they may have hazardous effects (Al-Attar et al. 2017; 
Hassaan and El Nemr 2020).

Linuron (LIN) (3-(3,4-chlorophenyl)-1-methoxy-1-methyl 
urea) is a phenyl-urea herbicide commonly used to control a 
variety of broadleaf and grass weeds in a wide range of crops, 
including soybean, cotton, corn, wheat, sugar cane, potato, and 
many other fruits and vegetables (Bai et al. 2017; Spirhanzlova 
et al. 2017). By blocking photosynthetic electron transport 
chain enzymes, their principal mode of action is the destruction 
of photosynthesis in the targeted weeds (Hayyat et al. 2016).

Linuron enters and lingers in surface waterways through 
agricultural runoffs (Patterson 2004). It is also widespread 
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in the residues found on food and in drinking water (Pest 
Management Regulatory Agency 2014; Environmental Pro-
tection Agency, 2015). Recently, LIN was categorized as 
carcinogenic category 2 and harmful for reproduction cat-
egory 1B. (EFSA, 2016). It has an anti-androgenic reputa-
tion (Lambright et al. 2000). Actually, a number of studies 
have shown that LIN is associated with a variety of adverse 
effects on the health of male reproductive organs in rats such 
as abnormal fetal development, the development of tumors 
in Leydig cells, and a reduction in the production of tes-
tosterone both in vitro and in vivo (Hotchkiss et al. 2004; 
Wilson et al. 2009; Ding et al. 2017). This herbicide causes 
deformities, infertility, or cell cancers by attacking the liver 
and red blood cells (MarxStoelting et al. 2014; Bai et al. 
2017; Ding et al. 2017).

Previous research has shown that exposure to the herbi-
cide damages cells and generates oxidative stress, which in 
turn causes an excess of reactive oxygen species (ROS) and 
lipid peroxidation (Leong et al. 2013; Tichati et al. 2021). 
These organisms continuously develop as by-products of 
typical metabolic processes. Exposure to substances like 
pesticides, which the cell is unable to counteract, speeds 
up their production. One or more biomolecules, such as 
proteins, nucleic acids, lipids, and carbohydrates, are dam-
aged as a result (D’Souza 2017; Voronkovaet al. 2018). It is 
anticipated that reactive oxygen species (ROS) may cause a 
number of diseases, including liver problems and testicular 
atrophy (Bai et al. 2017).

Numerous researches showed that natural antioxidants 
shield cells from toxins brought on by pollutants. The pin-
eal gland regularly produces melatonin (N-acetyl-5-methoxy 
tryptamine), a well-known animal hormone with a variety of 
biological actions (Reiter et al. 2010). Melatonin is present 
both in the plant world and in animals (Acosta et al. 2022). 
Its anti-inflammatory, antioxidant, and anti-cancer activi-
ties were identified in numerous researches (Eghbal et al.  
2016; Favero et al. 2018). MLT protects against the toxicity of  
numerous environmental agents and chemical variables since 
it possesses antioxidant and preventive properties (Asghari 
et al. 2017; Król et al. 2018; Upadhyaya et al. 2018).

Melatonin increases antioxidant enzymes like catalase, 
glutathione peroxidase, and superoxide dismutase in rats 
(Magierowski et al. 2013; Manchester et al. 2015; Reiter 
et al. 2016). According to reports, melatonin may have the 
capacity to reverse the functional deficits linked to a variety 
of illnesses in the male reproductive system (Rocha et al. 
2015). Additionally, because it controls the release of ster-
oid hormones, MLT is essential for male reproduction. The 
lipophilic and hydrophilic characteristics of MLT, which are 
dispersed into subcellular organelles, enable it to cross the 
blood-testis barrier and the testicular cell membrane.

In order to assess several characteristics related to the 
gonadotropic axis response, antioxidant status, histological 

changes, and expression of the leucocyte marker CD 117 in 
the testis of linuron-exposed rats, the current investigation 
was carried out. Additionally, it looked into whether mela-
tonin therapy could lessen the toxicity caused by linuron. 
Melatonin has a well-known part in mammals’ seasonal and 
circadian rhythms. However, nothing is known about its gen-
eral impact on the physiology of male reproduction.

Materials and methods

Chemicals

Linuron bought Linuchem, a commercial formulation of 
linuron with a CAS registration number of 1071–83-6 and a 
homologation number of 08 46 126, which contains linuron 
at a concentration of 50% (Fig. 1a) from Sigma Chemical 
Co., melatonin (St. Louis, MO, USA) (Fig. 1b).

Animals and protocol design

The Pasteur Institute furnished 28 male albino Wistar 
rats, each weighing 250 ± 0.10 g and being 8–9 weeks old 
(Algiers, Algeria). The rats were kept in ventilated cabinets 
Bio-C36 (TecniPlast; Italy) for 30 days prior to the start of 
the experiment (temperature 22–25 °C; light 12-h light/dark 
cycle; relative humidity 50–5 °C). The “ONAB of Bejaia” 
in Algeria provided the regular feed for the rats, which were 
also given unlimited access to water. Twice every week, the 
bedding was changed. Before the studies, the animals were 
acclimated to these circumstances for a month.

The Ethical Committee of the Directorate General for 
Scientific Research and Technological Development at 
the Algerian Ministry of Higher Education and Scientific 
Research approved all the protocols used in this study in 
accordance with the International Guidelines for Laboratory 
Animal Care and Use (Council of European Communities) 
(JO86/609/CEE; permit number PNR/SF 08/2012). The rats 
were randomly separated into four groups of seven animals 
each to assess the toxicity of LIN.

Group 1 (control): For 30 days, rats were given 1 mL of 
distilled water by oral gavage.

Rats in group 2 (MLT-treated group) received an oral 
MLT treatment for 30 days at a dose level of 10 mg/kg/bw.

Fig. 1  Chemical structure of linuron and melatonin
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Rats in group 3 (LIN-treated) received an oral LIN treatment 
for 30 days at a dose of 1/10 of LD50 (120 mg/kg/bw/day).

Rats in group 4 (MLT + LIN) received MLT and LIN for 
30 days in the same manner as groups (2) and (3).

The amount of LIN utilized in this experiment has been 
employed in other studies since it is toxic but not fatal to 
rats (Bai et al. 2017). According to Olukole et al. (2018), 
the MLT was dissolved in a DMSO saline solution. Regular 
checks were made on the animals’ body weight, water and 
food intake, and body weight. The animals underwent an 
overnight fast at the conclusion of the trial, and their total 
body weight was noted. To reduce the stress on the animals, 
they were scarified by cervical decapitation.

Tissue and blood samples

The blood was collected under ice in polyethylene heparin 
and centrifuged at 2500 × g for 15 min at 4 °C. The col-
lected plasma was separated into Eppendorf tube and kept 
at − 20 °C until the hormonal parameter analysis.

Testicular homogenate preparation

After the animals have been dissected, the testis was care-
fully taken out and weighed under ice. A 2 mL buffer solu-
tion of phosphate-buffered saline (PBS) (1:2 weight/volume, 
pH 7.4) was used to homogenize 1 g of testes. The cell sus-
pension was centrifuged (9000 × g, − 4 °C, 15 min) after the 
tissues had been homogenized. The resulting supernatants 
were divided into Eppendorf tubes and kept at – 20 °C until 
the oxidative stress parameters were measured.

ELISA pituitary–testicular hormone analysis

ELISA kits were used to measure the levels of testosterone, 
LH, and FSH in accordance with the manufacturer’s instruc-
tions (SKFDIA Beckman Coulter, Inc., 33,560 testosterone, 
ref. 33,560; FSH, ref. 33,520; LH, ref. 33,510).

Testicular redox status markers

Level of malondialdehyde

Lipid peroxidation products in testis homogenates were 
determined as TBA-reactive metabolites expressed as the 
level of malondialdehyde (MDA) formation according to 
Buege and Aust (1978). Briefly, 100 µl of supernatant was 
sonicated with 50 µl of Tris-buffered saline (TBS) and 
125 µl of trichloroacetic acid (TCA)-BHT to precipitate pro-
teins, and then centrifuged at 1000 × g, 10 min, 4 °C. After 
that, 200 µl of the supernatant was mixed with 40 µl of HCl 
(0.6 M) and 160 µl of TBA dissolved in TBS. The mixture 
was heated in a water bath at 80 °C for 10 min. The pink-red 

complex is based on the peak absorbance at 532 nm which 
was proportional to the amount of TBARS formed. Values 
are expressed in nmol malondialdehyde (MDA) equivalents 
per mg of protein.

Levels of protein carbonyl

Protein carbonyl concentrations were determined using the 
Levine et al. (1990) approach, which relies on derivatizing 
the carbonyl group with 2,4-dinitrophenylhydrazine (DNPH) 
to produce a stable 2,4-dinitrophenyl. At 370 nm, absorb-
ance was measured. Millimole per milligram of protein was 
used to express protein carbonyl (PCO) concentration.

Oxidative biomarkers

Glutathione (GSH) determination was carried out using 
Weekbeker and Cory’s method (1988). The idea behind 
this assay is to measure the optical absorbance of 2-nitro-
5-mercapturic acid, which is produced when glutathione’s 
(-SH) groups reduce the compound 5,5-dithiol-bis-2- 
nitrobenzoic acid (DTNB). Deproteinization is carried out 
for this purpose in order to retain solely the (-SH) groups 
unique to glutathione. At 412 nm, the absorbance was 
measured. The amount of GSH was given as mmol GSH/
mg protein. The glutathione-S-transferase (GST) activity  
was evaluated by Habig et  al. (1974). The absorbance 
was evaluated at 340 nm at 30-s intervals for 3 min. The  
computed and expressed GST activity is given in units of 
nmol CDNB conjugate/min/mg protein.

The enzymatic activity of glutathione peroxidase 
(GPx) was determined by Flohe and Gunzler (1984). This 
approach is based on decreasing hydrogen peroxide  (H2O2) 
in the presence of reduced glutathione (GSH). At 412 nm, 
the absorbance was measured. GPx activity was deter-
mined and represented as nmol/min/mg protein. The enzy-
matic activity of catalase was measured at 25 °C using 
Aebi’s method (1984). Kinetic monitoring of the hydrogen 
peroxide  (H2O2) elimination by the CAT enzyme was done 
at 240 nm. Calculated and represented as mmol of  H2O2/
min/mg of protein, CAT activity was determined. The 
activity of superoxide dismutase was measured. According 
to the method described by Beyer and Fridovich (1987) 
based on the ability of superoxide dismutase to prevent 
the reduction of nitro blue tetrazolium served as a meas-
ure of the enzyme’s activity (NBT), the reaction medium 
contains a photosensitizer (riboflavin) and NBT, a mol-
ecule that can be reduced by O-generated by riboflavin. 
The SOD activity was estimated and represented as (inter-
national unit) UI/mg of protein after the absorbance was 
measured at 560 nm.
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Histopathological analysis

Fresh testicular tissue pieces were preserved in Bouin 
solutions for 24 h for histological analysis. They were 
dehydrated using a graduated ethanol solution before 
being imbedded in paraffin. Using a microtome (LEICA 
RM2235), the paraffin sections were cut into 5-μm-thick 
slices, which were subsequently deparaffinized and stained 
with hematoxylin and eosin (H&E) (Hould 1984). Using 
an LEICA DM 710 microscope, a single pathologist who 
was unaware of the experimental rat group independently 
assessed the histopathological analysis. Johnsen scoring 
was used to assess the spermatogenesis of the testes which 
ranges from 10 to 1, which was used to categorize the 
severity of germ cell injury (Johnsen 1970) (Table 1). The 
value of the Johnsen score in each testis was the mean point 
value from at least 20 seminiferous tubules, and it was used 
to compare long-term spermatogenesis between the control 
and treated groups.

Immunohistochemistry detection of CD117 
glycoprotein

Five-micrometer sections of a paraffin-embedded testis sam-
ple were cut, and they were afterwards deparaffinized and 
rehydrated using xylene and graded ethyl alcohol. Sections 
were treated with 3% hydrogen peroxide in deionized water 
for 30 min to suppress endogenous peroxidase activity. The 
sections were then stained for 4 min in deionized water with 
antigen retrieval solution after being washed with buffered 
tampons pH 7.6 and prepped for 45 min in 10 mM sodium 
citrate with a pH of 6.0 (Abcam Lab, UK). After that, sec-
tions underwent an overnight incubation at 4 °C with the 
primary antibody (anti-CD117 antibody ab10558). Slides 
were treated with biotinylated goat anti-rabbit antibody 

CD117 diluted 1:200 for 1 h at room temperature follow-
ing numerous washes in 50 mM Tris/HCl, pH 7.6 (both 
from Novus Biological, Laboratories). Using a reliable 
source of 3,3′-diaminobenzidine (DAB) chromogen (DAB; 
Sigma, St. Louis, MO, USA), the peroxidase method was 
used for 1 h at room temperature. Sections were viewed and 
photographed using a Leica DM 710 optical microscope, 
Mayer’s hematoxylin-counterstained sections, and a Leica 
microsystem camera (image processing software, LAZ EZ 
version 3). For image analysis, we used QuPath-0.3.2 soft-
ware to determine the number of positive cells (Bankhead 
et al. 2017).

Statistic data analysis

The means and standard error means were used to express all 
data (SEM). The treated groups were compared to the con-
trol groups using one-way analysis of variance (ANOVA), 
followed by Tukey’s, where p 0.05 was deemed significant. 
The GraphPad Prism application was used to run statistical 
tests (version 7.0; GraphPad Software, CA, USA).

Results

Treatment effects on rats’ health and behaviors

Male rats exposed to LIN did not exhibit any unusual 
behaviors during the trial, such as head flapping, scratch-
ing, biting, circling, licking, or passive motions. There was 
no mortality in any group. In the control and MLT groups, 
the rats exhibited no symptoms of systemic poisoning. The 
rats in the LIN group, however, exhibited clinical symptoms 
including anorexia and weight loss. Additionally, the rats in 
the MLT + LIN group displayed some anorexia-related signs 
and weight loss.

Treatment’s effect on testicle and body weight

According to Table 2, the LIN group’s body weight was 
significantly decreased in comparison to the control group 
(− 9.13%, p < 0.001). The absolute and relative testis weights 
were affected by LIN exposure as well. A significant diminu-
tion in testicular weight was observed in LIN rats compared to 
the control and MLT groups (respectively, p < 0.05, p ˂  0.001).

Pituitary testicular axis response to LIN treatment

Concentrations of plasmatic FSH, LH, and testosterone in 
all of experimental groups are represented in Fig. 2. The 
results show that LIN-treated rats had a negative impact 
on hormonal secretion revealed by significant diminution 
in plasma levels of FSH, LH, and testosterone compared 

Table 1  Johnsen scoring system for evaluating testicular damage

Johnsen score Description of histological criteria

10 Fully developed spermatogenesis
9 A few late spermatids, slightly delayed  

spermatogenesis, and an unorganized epithelium
8 Less than five spermatozoa per tubule, few late 

spermatids
7 No spermatozoa, no late spermatids, many early 

spermatids
6 No spermatozoa, no late spermatids, few early 

spermatids
5 No spermatozoa or spermatids, many spermatocytes
4 No spermatozoa or spermatids, few spermatocytes
3 Spermatogonia only
2 No germinal cells, Sertoli cells only
1 No seminiferous epithelium
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to the control group (p < 0.01) (Fig. 2a–c). This decrease 
in levels was − 44%, − 65%, and − 62%, respectively. Nev-
ertheless, MLT supplementation resulted in a considerable 
rise in these levels.

Stress biomarker response

The effects of LIN exposure and MLT on the antioxidant 
defense system in the rat testis are summarized in Figs. 3 
and 4. The results demonstrate a considerable increase in 
MDA and PCO levels in LIN-exposed rats, with values 
significantly higher than the control (p < 0.01; p < 0.05) 
(Fig. 3b, c). Rats exposed to LIN had a significant uptick 
on both the activity of antioxidant enzymes such GST 
and GST (p < 0.05) and GPx (p < 0.001) (Fig. 4a, b). 
Melatonin treatment has improved in these parameters. In 
addition, the data demonstrate a substantial reduction (p 
< 0.05) in GSH level, as well as CAT and SOD activities 
compared to the control group.

Histopathological analysis

Slides of testis were observed to have morphological changes 
in seminiferous epithelium or in spermatogenesis stages that 
could be linked to LIN toxicity. Effectually, microscopic 
examination of the testis histology in control and melatonin-
treated rats reveals normal testis tissue, including normal 
seminiferous tube structure (Ts), normal Leydig cell (Cl) 
in the interstitial tissue (TI), and no alterations to the strati-
fied seminiferous epithelium (Es) (Fig. 5A, B). However, 
stratified seminiferous epithelium in LIN treatment groups 
showed substantial modifications by decreasing its density, 
uncommon germ cells with pycnotic nuclei (Np), absence 
of Leydig cells, a considerable drop in sperm counts, and 
vacuolization (V) (Fig. 5C, D). In comparison to rats just 
receiving LIN treatment, testis sections from rats getting 
the combined treatment (MLT + LIN) displayed fewer his-
tological changes in the stratified seminiferous epithelium. 
As a result, the testis tissue injury intensity was significantly 
decreased (Fig. 5E, F).

Table 2  Effects of treatments 
on body weight, absolute and 
relative testes weights in control 
and experimental groups

Values are given as mean ± SEM. For groups of 7 animals each. Significant difference: MLT, LIN groups 
compared to the control (***p < 0.001, *p < 0.05)

Parameters Experimental groups

Control MLT LIN MLT + LIN

Initial body weight (g) 251.9 ± 3.30 252.71 ± 2.79 250.87 ± 3.04 250.02 ± 5.58
Final body weight (g) 275.28 ± 4.41 259 ± 4.42 237.3 ± 3.32*** 235 ± 5.91***
Absolute testes weight (g) 3.25 ± 0.13 2.91 ± 0.15 2.64 ± 0.16* 2.86 ± 0.15
Relative testes weight (g) 1.27 ± 0.06 1.20 ± 0.06 0.95 ± 0.04*** 1.13 ± 0.08

Fig. 2  Effects of LIN (linu-
ron) and MLT (melatonin) 
on the concentration of FSH 
(follicle-stimulating hormone) 
(a), LH luteinizing (b), and 
testosterone (c) in the plasma 
of animals after 30 days of 
treatment. Values are given as 
the mean ± SEM of 7 rats. Sig-
nificant difference: MLT, LIN, 
and LIN + MLT versus control 
group (***p < 0.001, **p < 
0.01, **p < 0.05). Significant 
difference: MLT + LIN versus 
LIN group (#p < 0.05, ##p < 
0.01)
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Fig. 3  Effects of LIN (linuron) 
and MLT (melatonin) on the 
GSH (reduced glutathione) (a), 
MDA (malondialdehyde) (b), 
and PCO: protein carbonyl (c) 
levels in testis of animals after 
30 days of treatment. Values 
are given as the mean ± SEM 
of 7 rats. Significant difference: 
MLT, LIN, and LIN + MLT 
versus control group (*p < 0.05, 
**p < 0.01). Significant differ-
ence: MLT + LIN versus LIN 
group (.#p < 0.05)

Fig. 4  Effects of LIN (linuron) and MLT (melatonin) on the enzy-
matic activities of GST (glutathione-S-transferase) (a), GPx (glu-
tathione peroxydase) (b), CAT catalase (c), and SOD (superoxyde 
dismutase) (d) in the testis of animals after 30  days of treatment. 

Values are given as the mean ± SEM of 7 rats. Significant difference: 
MLT, LIN, and LIN + MLT versus control group (***p < 0.001, *p 
< 0.05). Significant difference: MLT + LIN versus LIN group (.##p < 
0.01)
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Treatment effect on inflammation response (testis 
CD 117 expression)

Testis from control and melatonin-treated rats show less CD 
117 + cell expression than testis from LIN and LIN MLT-treated 
rats (Fig. 6A–D). Additionally, the number of CD117 + cells 
estimate using QuPath 3.2 software showed a significant 
increase in CD117 expression in the LIN-treated rats compared 
to the control and melatonin groups (p 0.05) (Fig. 6E).

Discussion

Toxic substances in the environment, such as pesticides, can 
contribute to the development of oxidative stress by free 
radical increasing free radical production, which can have 
negative effects like metabolic changes, neurological disor-
ders, and fertility issues (D’Souza 2017; Kim et al. 2017; 
Kadar et al. 2017). Recent studies have shown the protec-
tive benefits of antioxidants in cells and tissues exposed to 
these substances in order to prevent oxidative stress (Król 
et al. 2018; Prathima al. 2020, Li et al. 2021). The ability of 
melatonin to mitigate luniron-damaging effects on the testis 
was examined in this study.

In the current study, LIN administration for 30 days at a 
dose of 120 mg/kg body weight resulted in a loss of body 
and testicular weight. The loss of body and target organ 
weight is regarded as a significant sign of the toxicity of 
LIN on the health of the rats. The decrease in body weight 
after pesticide administration was reported in several stud-
ies, and it was often associated with the decrease in food 
intake (Bhatti et al. 2011; Chiali et al. 2013). The results 
suggest that LIN can affect eating behavior of animals. This 
has been made clear by studies that suggest that ghrelin and 
serotonin, which regulate the hunger mechanism, might be 
altered by pesticides (Peris-Sampedro et al. 2015; Burke and 
Heisler 2015; Judge et al. 2016). Testicular weight is one of 
the important indicators for assessing male reproductive tox-
icity. According to our data, the absolute and relative testis 
weights were lower in the group exposed to the LIN than 
in the control group. This decline may be due to luniron’s 
harmful side effects on testicular tissue (Bai et al. 2017; 
Prathima et al. 2020). However, MLT supplementation to 
LIN-treated rats restores absolute and relative testis weights. 
This may be due to increased food intake, which reduces the 
formation of free radicals, leading to tissue repair (Asghari 
et al. 2017; Li et al. 2021).

In our study, testicular hypoplasia observed after 
luniron exposure was accompanied with hormonal deple-
tion. The androgen hormone class includes testosterone, a 
steroid hormone made from cholesterol; it is the primary 
hormone of the testicles produced by Leydig cells whose 
secretion was regulated by pituitary hormones including 

LH and FSH. It promotes male growth and development; 
it is also an important factor in the control of sperm for-
mation (Leong et al. 2013). In our work, rats chronically 
exposed to LIN for 30 days induced a significant deple-
tion in plasmatic testosterone, LH, and FSH concentra-
tion. Therefore, it would appear that the toxicity of the 
LIN was directly related to the process of biosynthesis 
gonadotropic hormones (Wilson et al. 2009). A few recent 
works on the use of pesticides, such as organophosphate 
and pyrethroid insecticides, have shown altered levels of 
pituitary gonadotropic hormones, as well as FSH, LH,  
and steroid hormones (Han et al. 2008; Anderson et al. 2008;  
Blonco-Munoz et al. 2010). Pesticides act through differ-
ent mechanisms like inducing oxidative stress and low-
ering testosterone levels (Dehkhargani et al. 2011; Clair 
et al. 2012). Pesticides are responsible for decreasing tes-
tosterone concentration either by inhibiting the release of 
FSH and LH or also by inducing Leydig cell apoptosis 
(Slimani et al. 2011). Our histological findings according 
to Johnsen scoring system support these results and dem-
onstrated that rats exposed to LIN developed some lesions 
of the seminiferous epithelium that were accompanied by 
a reduction in the density of germ cells and occasionally 
by the lack of Leydig cells inside the seminiferous tubules.

The administration of MLT resulted in an increase in 
FSH, LH, and testosterone levels with a notable recovery 
in testicular tissue. The protective effects of MLT against 
LIN-induced testis toxicity may be a result of its capacity 
to reduce oxidative stress and mitigate inflammation via 
a variety of pathways, including reducing lipid peroxida-
tion and Leydig cell death (Li et al. 2020; Koohsari et al. 
2020). MLT as an antioxidant agent can prevent altera-
tion of enzymatic Leydig cell function induced by LIN 
treatment such as cytochrome P450 enzymes involved in 
synthesis of testosterone (Akingbemi et al. 2000).

Our data show an increase in CD117 glycoprotein 
expression in testis cells of rats treated with LIN com-
pared to the control and MTL groups. CD117 is thought 
to play an important role in hematopoiesis, in spermato-
genesis, and in carcinogenesis (Natali et al. 1992; Pietsch 
et al. 1998). Potti et al. (2005) demonstrated the presence 
of relation between the overexpression of CD117and pes-
ticide exposure in human. In our study, we observed a sig-
nificant diminution in the number of C117-positive cells 
in testis of rats treated with MLT. This result reveals the 
important role of MLT to regulate inflammatory pathway 
during luniron-induced testicular toxicity and the ability 
of this natural agent to protect and minimized spermato-
genesis damage.

According to several investigations, the most frequent 
mechanism of pesticide toxicity is oxidative damage (Trea 
et al. 2020; Tichati et al. 2021; Li et al. 2021). Reactive oxy-
gen species (ROS) overproduction leads to oxidative state 
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within the testis and a concomitant decrease in antioxidant 
levels, which compromises the integrity of the cell mem-
brane concluding in impaired spermatogenesis as observed 
in rats (Lee et al. 2007; Voronkova et al. 2018). The results 
of the current investigation, LIN rat’s exposure resulted in 

a significantly lower testis GSH content with an increase 
in GST and GPx activity compared to the control group. 
Since proteins with aromatic amino acids are particularly 
vulnerable to oxidation and serve as a target for ROS, the 
conversion of GSH to GSSG triggers a cellular defense 
mechanism against oxidative damage (Aydin et al. 2010; 
Prathima et al. 2020). Additionally, our findings revealed a 
rise in PCO and MDA levels, which may be brought on by 
the creation of adducts between certain amino acid residues 
and lipid peroxidation products like MDA (Stadt-man and 
Levine 2006). Additionally, the rise in MDA levels sparked 
physicochemical changes that harmed the components of 
cell membranes and disrupted biomembranes (Leong et al. 
2013; Tichati et al. 2019). Nevertheless, MLT supplementa-
tion considerably decreased levels of oxidative damage to 
proteins and lipids. MLT’s ability to scavenge pro-oxidant 

Fig. 5  Histological sections of the testes in rat’s H&E staining. 
Control and melatonin-treated rats (A, B), luniron (C, D), and 
melatonin-luniron-treated (E, F) and Johnsen scores (G). A and B 
show a normal structure of seminiferous tubule (St), spermatozoa 
Spz concentrated in light (Lu), Leydig cell (LC) in interstitial tis-
sue, and stratified seminiferous epithelium (Es). In luniron rats (C, 
D), the layer is less dense and has rare germ cells with pycnotic 
nuclei (arrow); Leydig cells are virtually absent and show vacuoli-
zation of seminiferous tubule (V). Restoration of Es in rats treated 
with melatonin (E, F). The sections were observed at 150- and 
600-fold magnification (scale bars 40 to 50 μm)

◂

Fig. 6  Immunohistochemical 
labeling for CD117 expres-
sion in liver of control (A), 
melatonin (B), luniron (C), and 
luniron/melatonin (D) treated 
rats at 300 × magnification. 
Control and melatonin rats’ sec-
tions exhibit a lower number of 
CD 117 + cells compared with 
luniron-treated rats. The expres-
sion of CD117 was estimated 
by number of positively stained 
cells using QuPath (E). Data is 
represented as means ± SEM 
(n = 5). *p < 0.05 compared with 
the control and MLT groups, 
#p < 0.05 compared with the 
corresponding LIN
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chemicals or increase enzymatic antioxidant defense may 
be the reason for its protective benefits in our investigation 
against LIN-induced toxicity (Manchester et al. 2015; Reiter 
et al. 2016). The initial lines of defense against the harm-
ful effects of free radicals are CAT and SOD. They convert 
superoxide radicals into the considerably more stable  H2O2. 
The reduction of hydrogen peroxide by CAT must come 
after this function in order for it to be effective (Bhatti et al. 
2014). This explains why, in our investigation, we noted that 
rats treated with LIN had lower activity levels of CAT and 
SOD. The considerable decrease may lead to an accumula-
tion of free radicals in testis tissue. Rats that were subjected 
to LIN and other insecticides showed similar results (Leong 
et al. 2013; Prathima et al. 2020).

In contrast, administering MLT to rats receiving LIN 
treatment increased GSH levels and recovered the SOD and 
CAT enzymatic activity. The antioxidant characteristics of 
MLT, which easily pass the blood–brain barrier and infiltrate 
cells, may contribute to this impact (Murawska-Ciaowicz 
et al. 2011; Goc et al. 2017; Król et al. 2018). In this context, 
Nascimento et al. (2019) also revealed the protective benefits 
of MLT against cypermethrin-induced oxidative injury in the 
rat liver, serum, and brain.

We can allow from the present findings that melatonin 
may protect the testis from inflammation and damaging 
effects of reactive oxygen species produced by LIN expo-
sure. The mechanism of melatonin’s protecting effects 
involves possible stimulation of antioxidative enzyme activi-
ties and inhibition inflammatory factors. Melatonin is sup-
posed as a safe substance with stumpy risk of side effects. 
It gives a perspective to promote studies of its free radical 
scavenger and anti-inflammatory properties in prevention 
of oxidative stress-dependent diseases, caused by pesticides 
such as linuron.
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