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	 Abstract 
In this study, we provide statistical inferences about earthquake data by modelling some lifetime distributions. We consider five lifetime distributions (Weibull, exponentiated Exponential [1], exponentiated Weibull [2], generalized Lindley [3], and Power Lindley [4]) to model earthquake data. We consider two earthquake data sets in this paper. The first data consists of 20 observations denoting the magnitudes of earthquakes in the Kuşadası bay on 23 November 2020 while the second data set includes the magnitudes of earthquakes in the Kuşadası bay on 24 November 2020. The maximum likelihood method is used to estimate the unknown parameters of these distributions. We estimate the average magnitude of earthquakes via the maximum likelihood estimates of the parameters of five lifetime distributions. 
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1. Introduction  
On October 30, 2020,  an earthquake occurred in Kuşadası Bay with a magnitude calculated as 6.9 by the Kandilli Observatory and Earthquake Research Institute. Hundreds of aftershocks occurred after the earthquake [5,6].  As a result of this earthquake, a total of 117 people lost their lives and 1,034 people were injured [7]. Many buildings were destroyed in Bayraklı and Bornova districts of İzmir [8].
In the literature, many statistical distributions are used to model real-life data in many fields such as biology, chemistry, engineering, and medical sciences, etc. Some of the commonly used lifetime distributions are Weibull, Lindley, and various modified versions of these distributions. In this study, unlike other studies in the literature, estimates of the mean magnitude of earthquakes  will be provided using some known lifetime distributions such as Weibull, exponential Exponential [1], exponentiated Weibull [2], generalized Lindley [3] and Power Lindley distribution [4]. The main aim of this paper is to model earthquake data via  these lifetime distributions and estimate the average magnitude of the earthquakes.
The rest of this study is organized as follows: In the second section, we present the mentioned lifetime distributions. In Section 3, the maximum likelihood estimators (MLEs) of the parameters of the examined distributions are obtained.  In Section 4, we present two data applications to determine the optimal model for each dataset and compute the estimated average magnitude of earthquakes. Also, the selection criteria to compare the fits of the models to data sets are given in same section.  The results are given in Section 5. 

2. Modelling Methodology

2.1. Weibull distribution 
The Weibull distribution is one of the popular lifetime distributions. The Weibull is very useful in modeling lifetime data obtained in various fields. The cumulative distribution function (CDF) and probability density function (PDF) of the Weibull distribution are given by 
 

 					(1)
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respectively, where,  is the shape parameter,  is the scale parameter and . 

2.2. Exponentiated Exponential distribution

Exponentiated Exponential (EE) distribution was introduced by Gupta and Kundu [1]. The CDF and PDF of the EE distribution are given as follows:
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respectively, where  and .


2.3. Exponentiated Weibull distribution

Exponentiated Weibull (EW) distribution was proposed by Pal et al. [2]. The EW distribution is a generalization of  the Weibull distribution. The CDF and PDF of the EW distribution are given by
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respectively, where and  are shape parameters,  is scale parameter and . The EW distribution is reduced the Weibull distribution for in (5). 

2.4. Generalized Lindley distribution

Lindley distribution was suggested by Lindley [9]. The CDF and PDF of Lindley distribution are
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respectively, where   and .

Generalized Lindley (GL) distribution is introduced by Nadarajah et al. [3]. The CDF and PDF of the GL distribution are given by 
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respectively, where,  ve . 




2.5. Power Lindley distribution


Power Lindley distribution was proposed by Ghitany et al. [4]. The Power Lindley was obtained by considering a transformation  in (7)-(8). Thus, the CDF and PDF of Power Lindley distribution are given by

  					(11)

					(12)







respectively, where  and [4]. Ghitany et al. [4] emphasized that Power Lindley distribution (PL) is a mixture of Weibull  and generalized gamma  distribution with mixing proportion.

3. Point Estimation

In this section, we present the maximum likelihood estimators (MLEs) of the parameters of the examined lifetime distributions in Section 2.


Let  be a random sample from the Weibull distribution.The log-likelihood function is given by 

  			(13)








The MLEs of the  and  parameters are the values that maximize the  function in (13). The MLEs of the  and  parameters can be obtained by simultaneous solution of the nonlinear equations created by taking the derivatives of the  function according to the  and  parameters and equating them to zero.



, be a random sample from the EE distribution. The log-likelihood function is given by 

  		(14)
[1].








The MLEs of the  and  parameters are the values that maximize the  function in (14). The MLEs of the  and  parameters can be obtained by simultaneous solution of the nonlinear equations created by taking the derivatives of the  function according to the  and  parameters and equating them to zero.



, be a random sample from the EW distribution. The log-likelihood function is given by 

  		(15)
[2].








The MLEs of the  and parameters are the values that maximize the  function in (15). The MLEs of the  and  parameters can be obtained by simultaneous solution of the nonlinear equations created by taking the derivatives of the  function according to the  and  parameters and equating them to zero.



, be a random sample from the GL distribution. The log-likelihood function is given by 

  		(16)
[3].








The MLEs of the  and  parameters are the values that maximize the  function in (16). The MLEs of the  and  parameters can be obtained by simultaneous solution of the nonlinear equations created by taking the derivatives of the  function according to the  and  parameters and equating them to zero.



, be a random sample from the PLdistribution. The log-likelihood function is given by 

  	(17)
[4].








The MLEs of the  and  parameters are the values that maximize the  function in (17). The MLEs of the  and  parameters can be obtained by simultaneous solution of the nonlinear equations created by taking the derivatives of the  function according to the  and  parameters and equating them to zero.

In this study, the optim function in the R program and the BFGS algorithm, which was first studied by Fletcher [10] were used to solve the related likelihood equations. 

4. Model Evaluation
In this section, we present two earthquake data sets and some selection criteria to compare the fits of models to data sets. We consider some selection criteria such as Akaike information criterion (AIC), Bayesian information criterion (BIC), Anderson-Darling statistics (A*), Cramér-von Mises statistics (W*), Kolmogorov-Smirnov statistics (K-S), and p-values (A*, W*, KS) for earthquake data analysis. These measures are given by
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respectively, where  denotes   order statistics,  denotes to the number of parameters,  is the sample size,  is the value of the log-likelihood function,  denotes empirical distribution function, and  refers to the CDF of the examined model.
4.1. Data Description
In this subsection, we present two real data sets including the magnitudes of the earthquakes in Kuşadası bay. The first data set refers to the magnitudes of the earthquakes on November 23, 2020 while the second data set includes the magnitudes of the earthquakes on November 24, 2020. Some descriptive statistics of the data sets are given in Table 1.




Table 1. Some descriptive statistics of the earthquake data sets
	Data Set
	n
	Min.
	Max.
	Mean
	Var.
	CS
	CK

	1
	20
	1.2
	2.5
	1.780
	0.17
	0.308
	-1.013

	2
	28
	1.3
	2.5
	1.785
	0.077
	0.519
	0.402


Min.: Minimum, Max.: Maximum, Var.: Variance, 
CS: Coefficient of Skewness, CK: Coefficient of Kurtosis
5. Results

In this section, the results of the earthquake data analysis are presented. Table 2 contains the maximum likelihood estimates and their standard errors (SEs) of the parameters of the distributions fitted to the data given in Section 2. Table 3 shows the comparison statistics used to compare the models fitted to the data sets.

Table 2. The MLEs and SEs of the parameters of the fitted models for the earthquake datasets
	Data set
	Model
	
 
	
 
	
 
	
 
	
 
	
 

	1
	Weibull
	4.8565
	1.9424
	-
	0.8392
	0.0947
	-

	
	EE
	2.9180
	101.5109
	-
	0.5271
	80.9166
	-

	
	EW
	1.2362
	1.6353
	14.0620
	2.7924
	1.8372
	52.4211

	
	GL
	77.8533
	3.2482
	-
	61.7207
	0.5364
	-

	
	PL
	3.5973
	0.1856
	-
	0.5254
	0.0715
	-

	2
	Weibull
	6.6413
	1.9049
	-
	0.9009
	0.0575
	-

	
	EE
	1100.3067
	4.2306
	-
	1077.9688
	0.6193
	-

	
	EW
	1.0281
	2.1623
	22.3760
	1.6700
	1.5381
	58.1391

	
	GL
	4.5730
	825.2685
	-
	0.6171
	794.5009
	-

	
	PL
	4.9163
	0.0889
	-
	0.5911
	0.0364
	-




Table 3. The selection criteria for the earthquake datasets
	Data set
	Model
	AIC
	BIC
	KS
	A*
	W*
	p-value (KS)
	p-value (A*)
	p-value (W*)

	1
	Weibull
	24.7687
	26.7601
	0.1271
	0.4265
	0.0614
	0.9031
	0.8203
	0.8111

	
	EE
	23.7226
	25.7140
	0.1012
	0.3139
	0.0383
	0.9866
	0.9265
	0.9459

	
	EW
	25.5679
	28.5551
	0.1014
	0.3129
	0.0384
	0.9863
	0.9274
	0.9453

	
	GL
	23.6953
	25.6867
	0.1013
	0.3120
	0.0380
	0.9864
	0.9281
	0.9472

	
	PL
	24.9289
	26.9203
	0.1258
	0.4152
	0.0581
	0.9095
	0.8318
	0.8316

	2
	Weibull
	14.0751
	16.7395
	0.1241
	0.5293
	0.0727
	0.7813
	0.7156
	0.7388

	
	EE
	10.0468
	12.7112
	0.1170
	0.3096
	0.0541
	0.8383
	0.9302
	0.8550

	
	EW
	11.3317
	15.3283
	0.0952
	0.2270
	0.0380
	0.9613
	0.9812
	0.9460

	
	GL
	9.9860
	12.6504
	0.1160
	0.3034
	0.0530
	0.8457
	0.9351
	0.8618

	
	PL
	12.7474
	15.4118
	0.1121
	0.4093
	0.0566
	0.8730
	0.8383
	0.8397


     Bold text indicates the best model
From the Table 3, it can be concluded that except for the KS test statistic and the its p value, the GL distribution is the best fitted model to first data set according to other selection criteria while the EE distribution has more fit than other models acoording to KS statistics and its p-value for the first data set. On the other hand, we observe that except for the AIC and BIC, the EW distribution is the best fitted model to second data set according to other selection criteria while the GL distribution has more fit than other models according to AIC and BIC for the second data set.
	[image: ]
	[image: ]


Figure 1. The fitted CDFs (on left) and PDFs (on right) for data set 1

	[image: ]
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Figure 2. The fitted CDFs (on left) and PDFs (on right) for data set 2

Table 4. The estimated average magnitude of the earthquakes for datasets
	Data Set 
	Weibull
	EE
	EW
	GL
	PL

	1
	1.7804
	1.7828
	1.7784
	1.7822
	1.7765

	2
	1.7769
	1.7919
	1.7855
	1.7916
	1.7810



[bookmark: _GoBack]Figures 1-2 illustrate the fitted CDFs and PDFs for two datasets. Table 4 provides the estimates of the average magnitude of the earthquakes for data sets. These estimates are computed by using the expected values of the distributions under MLEs in Table 2. From Table 4, it can be concluded that the estimates are very close the true mean of the samples in Table 1. 
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