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Abstract: This study addresses a fundamental question in artificial intelligence applications within
forestry science: Can Al models effectively learn and incorporate inherent biological growth patterns
and laws governing tree development? Through systematic evaluation of Deep Learning Architecture
(DLA) implementations in forestry modeling, we identify two distinct methodological paradigms:
conventional adaptive learning-based models and optimized DLA frameworks incorporating
hyperparameter and regularization techniques. While Al models demonstrate superior statistical
performance compared to traditional regression approaches, their evaluation in forestry science
necessitates consideration beyond mere performance metrics, particularly regarding biological
plausibility. Our analysis reveals that standard adaptive learning-based Al models, despite achieving
high training accuracy, often exhibit overfitting tendencies and fail to capture fundamental biological
relationships. In contrast, hyperparameter-optimized and regularization-optimized DLA models,
incorporating customized network parameters. demonstrate remarkable capacity in maintaining
biological fidelity while mitigating overfitting challenges. These optimized frameworks successfully
predict tree attributes while preserving consistency with established dendrometric principles,
effectively addressing the traditional 'black-box' limitations of Al models. The study concludes that
through proper optimization techniques, Al models can indeed be trained to account for biological
growth patterns, though their full potential in forestry applications remains to be explored as our
understanding of their capabilities continues to evolve.

Keywords: biological reaslistic predictions, everfitting, hyperparameter-optimized and regularization-optimized
DLA models

1. Introduction

In the mid-nineteenth century, Alan Turing's influential 1950 paper in the Journal of Mind introduced a pivotal
question by juxtaposing two concepts: 'thinking' and 'machines’ through his inquiry, 'Can machines think?'
(Turing, 1950). This foundational concept of thinking machines has evolved into Artificial Intelligence (Al)
systems capable of learning the dynamic mechanisms and interrelationships within living ecosystems
(McCorduck, 2004; Nilsson, 2014). Turing's initial question has transformed into a more complex inquiry: 'Can
artificial intelligence (Al) learn and comprehend living systems, such as forest ecosystems?'

From this perspective, a critical initial phase in developing Al systems involves enabling Al to gain
comprehensive understanding of the living systems it encounters (Russell et al., 2015; Brynjolfsson and
Mitchell, 2017). The predictive capabilities and effective learning processes of Al in relation to these living
systems represent crucial developmental stages in Al model evolution (Armstrong et al., 2014; Taddeo and
Floridi, 2018). Consequently, Al techniques increasingly focus on the quality of learning required to accurately
model these complex biological systems.

Artificial Intelligence (AI) models have demonstrated remarkable success in learning processes across various
engineering disciplines, including electronics, manufacturing, mechanical engineering, communications, and
construction. Moreover, these models exhibit significant potential for understanding the complex
interrelationships within natural ecosystem growth processes, particularly in forest systems.
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Since the early 2000s, Al models—specifically Artificial Neural Network (ANN) models—have emerged as an
innovative and increasingly prominent prediction methodology in forest modeling studies. The growing
prominence of ANN models in forestry modeling literature can be attributed to two key advantages: first, their
robust capability for nonlinear modeling without the need for predetermined statistical functions, and second,
their abi]o generate successful and robust predictions without adhering to traditional statistical assumptions
(Ozgelik et al., 2010; Ashraf et al., 2013; Diamantopoulou et al., 2015). Many studies focused on developing
and evaluating ANN models by comparing their predictive capabilities for various individual tree and stand
characteristics against conventional regression models—the latter having served as the classical statistical
estimation methodology in forestry for approximately eight decades. Comparative analyses consistently
demonstrated that ANN models exhibited superior predictive performance in estimating individual tree and
stand attributes compared to traditional regression approaches. In this evolving landscape of predictive
modeling, Al models—particularly ANN models and more recently, Deep Learning Architecture (DLA)
models—have emerged as viable alternatives to classical regression approaches. This shift is particularly
significant given the longstanding criticisms of Al models with ANN or DLA regarding their reliance on
biological assumptions and limitations in modeling complex growth relationships within tree and forest systems,
especially in certain data structures. In forestry biometrics, while statistical validity and model fit are essential
criteria, the biological realism of predicted individual tree and stand attributes holds paramount importance. This
emphasis on biological realism was first articulated by Levins (1966), who established it as a fundamental
requirement for developing robust and predictive models in forest systems. Subsequently, Lei and Parresol
(2001) further advanced this concept by delineating specific biologically realistic characteristics crucial for
modeling individual tree growth.

Within this theoretical framework, prediction systems developed for forestry applications must demonstrate
consistency with established biological growth patterns. These pattems typically manifest as sigmoid growth
curves with distinct inflection points, multiple asymptotes, and monotonically non-decreasing trajectories over
time—characteristics that reflect the underlying biological processes of tree and forest development. This study
evaluates the potential of artificial intelligence models. particularly Deep Learning Architecture (DLA) models.
to generate predictions that align with biological realism and fundamental growth laws governing both
individual tree and stand development in forestry. The present research may explore the fundamental challenge
of training artificial intelligence systems to effectively recognize and account for the inherent biological patterns
and growth laws that characterize tree development processes within forest ecosystems.

2. Overfitting problem: A significant challenge and limitation in artificial intelligence

Al models, characterized by multiple non-linear hidden layers and thousands of neuronal weights, demonstrate
remarkable flexibility and non-linear modeling capabilities in their complex architectural structures when
modeling various individual tree and stand attributes. While this inherent flexibility in non-linear modeling
potentially offers superior predictive performance compared to traditional linear and non-linear regression
approaches, it simultaneously introduces the risk of overfitting during the training process. In overfitted
challenges, Al models may generate predictions that almost perfectly align with observed training data,
effectively memorizing the dataset—including its noise components—rather than learning the fundamental
input-output relationships. This phenomenon, formally known as the 'overfitting or generalization problem,
represents a critical limitation that frequently impairs the model's ability to generalize effectively to unseen or
validation datasets.

The manifestation of overfitting typically presents as a distinct pattern: while the model achieves exceptionally
low residual errors for the training dataset, it exhibits substantially larger errors when applied to unseen
validation data. Consequently, overfitted Al models often demonstrate poor statistical performance metrics
when evaluated against validation datasets. The hallmark symptoms of overfitting and generalization problems
can be characterized by low bias in training set predictions coupled with high variance and unsatisfactory
predictive capability when applied to validation datasets.

The implications of the overfitting problem extend beyond mere validation error metrics, significantly impacting
the ability to achieve biological realism in modeling individual tree and stand growth dynamics within forestry
science. When Al models succumb to overfitting, failing to learn intrinsic data relationships and instead
defaulting to memorization patterns, they may fundamentally violate principles of biological realism. The core




challenge with overfitted Al models lies in their tendency to memorize rather than learn the underlying
relationships in the training data, thereby compromising their ability to capture genuine biological patterns and
growth dynamics.

3. The hyperparameter-optimized or regularization-optimized AI models

In addressing the overfitting phenomenon within artificial intelligence frameworks, the optimization of
hyperparameters and regularization parameters emerges as a critical component in the development of Al
models. Neural network architectures incorporating such optimized hyperparameters are formally classified as
'hyperparameter-optimized ANN' models, reflecting their enhanced configurational sophistication. Also, Within
the artificial intelligence literature, AI models incorporating optimized regularization parameters are formally
designated as 'regularization-optimized ANN' models, reflecting their enhanced capacity for generalization
through systematic parameter adjustment. Artificial Neural Networks trained through adaptive learning
processes typically incorporate hyperparameters such as learning and momentum rates, with these parameters
traditionally optimized through error minimization between observed and predicted values. However, this
approach differs substantially from hyperparameter-optimized ANN models in their fundamental methodology.
While adaptive learning processes employ automatic parameter determination for residual minimization,
hyperparameter-optimized ANNs implement a more sophisticated approach, requiring meticulous customization
of network topology parameters. This optimization process demands systematic trial-and-error experimentation,
with particular emphasis on two critical objectives: mitigating overfitting tendencies and preserving biological
realism. The careful calibration of architectural parameters, including learning and momentum rates, represents
a more rigorous and controlled approach to network optimization compared to adaptive learning methodologies.
To address overfitting challenges and maintain biological realism in neural networks, various regularization
optimization strategies have emerged as effective methodological approaches. These techniques include early
stopping protocols based on Root Mean Square Emor (RMSE) metrics, regularization implementations
incorporating L1 and L2 penalty terms, and dropout mechanisms utilizing randomly excluded neural units.
These methodologies collectively serve to reduce network model complexity while enhancing the robustness of
neural network architectures (McCorduck, 2004; Goodfellow et al., 2016).

4. The growth laws and biological realism in tree growth

In forestry science about tree and stand growth and yield modeling studies, while the assessmn of statistical
prediction models such as regression analyses traditionally relies on various metrics including Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), coefficient of determination (R?), Bias, and
Root Mean Square Error (RMSE), the biological coherence of these models holds paramount importance.
Specifically, the predictive behavior patterns generated by these prediction models must demonstrate
fundamental oonsist&y with the inherent biological development trends and natural characteristics of the
modeled attributes. As stated in many studies such as Bailey and Clutter (1974) and Cieszewski (2002),
desirable characteristics of height growth curves are: (1) a sigmoidal structure (known as an “S curve”); (2) a
logical behavior with a zero value of height at age zero; (3) polymorphism; (4) an asymptotic behavior; and (5)
base-age invariance.

The fundamental principles of biological realism in tree growth volumetrics were initially established by
Heinrich Cotta in the early nineteenth century (Clark, 1902). A primary tenet of this biological framework

blishes that tree stem volume is fundamentally determined by the interaction of three key parameters:
diameter at breast height (DBH), total tree height (TTH), and tree form (Avery and Burkhart, 1983). While
many contemporary volume prediction systems primarily utilize DBH and TTH as independent variables for
total tree volume (TTV) estimation, often excluding tree form considerations (van Laar and Akca, 1997), the
underlying biological relationships remain crucial. The relationship between these parameters exhibits specific
biological patterns: TTV demonstrates a positive correlation with DBH when TTH remains constant, and
similarly, TTV increases with increasing TTH for constant DBH values. Significantly, these relationships




follow allometric curvilinear patterns rather than linear trajectories (Spurr, 1952; Avery and Burkhart, 1983).
For hyperparametrized Deep Learning Architecture (DLA) models to gain acceptance within the forestry
literature as effective prediction systems, they must demonstrate consistency with these established biological
patterns. Any deviation from expected trends, such as decreases or unexpected fluctuations in TTV values at
higher DBH and TTH values, would constitute a violation of biological realism, potentially compromising the
model's validity and utility in forestry applications.

In addition to comparing and evaluating various models for estimating individual tree and stand characteristics
according to different performance criteria (R?, Bias, RMSE, AIC, BIC, etc.), the assessment of prediction
accuracies obtained through these predictionmodels is also conducted using graphical methods. In a related
evaluation, Ercanli et al. (2023) presented graphs of dominant height growth predictions for five site index
values (i.e., 5, 10, 15, 20, 25, and 30 m at base age 100) obtained through both ANN models and a nonlinear
mixed effects model with one random parameter (Fig. 1). Upon examination of Figure 1, while biologically
consistent estimates of dominant height development are observed in the left comer of the graph (Fig. la), the
standard feed-forward ANN model - trained with an adaptive learning process without any hyperparameter or
regularization parameter specifications - produced predictions that significantly violate and are highly
inconsistent with growth laws and biological realism about dominnat tree heights. Ercanli (2024), in a study
utilizing Deep Learning Algorithm - a multilayer artificial neural network - to predict individual tree taper using
stem diameters outside bark (DOB) and total tree volume (TTV), obtained results highly inconsistent with
biological realistic patterns for both characteristics when using a standard DLA model based on adaptive
learning (Fig. 2b and 3b). The implementation of optimized DLA architectures—specifically, a hyperparameter-
optimized model with 0.8 momentum and seven hidden layers for TTV predictions, and a regularization-
optimized model with 1x10°¢ dropout ratio and three hidden layers for DOB estimations—yielded statistically
robust results across both training and validation datasets while preserving biological plausibility in their
predictions (Fig 2a and 3a). The predictive outcomes generated by both hyperparameter-optimized and
regularization-optimized DLA models for TTV (Fig. 2a) and DOB (Fig. 3a) demonstrate strong adherence to

lished biological principles governing tree volume and diameter growth patterns in dendrometric science
(Avery and Burkhart, 1983; van Laar and Akca, 1997; Pretzsch. 2009).
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Fig. 1. Predicted site index curves for five site index values by Nonlinear mixed effect regression, feed-forward
network architectures and ANN with feed forward learning-log-tan of activation functions and 52 number of
neurons (Ercanh et. al. 2023)
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Figure 2. The change of total tree volumes predicted by the best predictive hyper-parametrized DLA (a) and
the standard DLA including 10 (b) number of hidden layer and according to DBHs and Total tree height (TTH)
(Ercanh, 2024)
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Conclusion
This investigation explores the fundamental question of whether artificial intelligence can be

effectively trained to incorporate inherent biological patterns and growth laws of tree development,
while providing a systematic assessment of Al model implementations in forestry applications, a




distinct branch of natural sciences. Despite artificial intelligence models demonstrating superior
performance metrics compared to traditional regression models from statistical science, the evaluation
of predictive models in natural sciences, particularly in forestry, extends beyond mere statistical
performance criteria. While artificial intelligence models demonstrate remarkable predictive ability
through their sophisticated nonlinear fitting capabilities, their training process necessitates
consideration of factors beyond conventional adaptive learning approaches, which traditionally focus
on minimizing the residuals between observed and predicted values. The employment of
hyperparameter-optimized and regularization-optimized DLA models, trained via an innovative
methodology incorporating customized network parameters, presents a significant advancement in
simultaneously addressing two critical challenges in forest modeling: (i) the statistical issues of
overfitting and generalization capacity, and (ii) the maintenance of biological realism in tree and stand
attribute predictions. In addressing the fundamental question 'Can artificial intelligence be trained to
account for the growth laws and biological patterns inherent in tree growth?', two distinct
methodological approaches emerge in the implementation of Al models with DLA for forestry
applications:

(i) Adaptive learning-based Al models prone to overfitting, which demonstrate high fidelity to
training data but fail to capture underlying biological relationships, essentially resulting in data
memorization rather than pattern recognition;

(i) Advanced DLA implementations incorporating hyperparameter optimization and regularization
techniques, characterized by systematic customization of network parameters to enhance model
generalization and biological consistency. The optimization-based approach represents a significant
advancement in elucidating the 'black-box' nature of these models, enabling the capture of intricate
data relationships. Through the systematic implementation of hyperparameter optimization and
regularization techniques, these advanced DLA frameworks demonstrate remarkable capacity in
maintaining biological fidelity while mitigating overfitting and enhancing generalization capabilities.
In this context, the Human-Centered Artificial Intelligence (HCAI) paradigm has been
comprehensively conceptualized by Holzinger et al. (2022). The application of this paradigm to forest
science represents a symbiotic integration of artificial and naturalmalligence. This integration aims to
augment, support, and optimize artificial intelligence systems, such as Artificial Neural Networks
(ANN) or Deep Learning Algorithms (DLA), with human knowledge and perspective in forest growth
and yield predictions. This approach facilitates a synergistic confluence of technological innovation
and human experiential expertise. However, the full potential of DLA applications in forestry science
remains to be fully explored as our understanding of its inherent capabilities and limitations continues
to advance.
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